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Abstract. On the basis of a simple model of time relaxation in disordered systems (such 
as glasses or spin glasses), we study the diffusion on clusters built on high-dimensional 
hypercubes. We show there exist two particular concentrations of available sites on the 
hypercube. The first one defines two distinct behaviours of relaxation: above p =$, the 
relaxation is purely exponential; below p = $, the relaxation is no longer exponential. The 
other case is of more interest: it is the percolation concentration. Using the unproven but 
argued assumption that, because of the high dimensionality of the considered space, the 
calculation may be mapped onto the problem of diffusion on a standard mean-field 
percolation cluster, we show that the relaxation should follow a stretched exponential law 
there with exponent f. We briefly discuss the physical implications of this approach. 

1. Introduction 

For a long time [ 11, a broad class of physical systems [2] has been recognised to exhibit 
non-exponential time relaxation at low temperatures. Dielectric materials [3], polymers 
[4], glasses [ 5 ]  and spin glasses [ 6 ]  show a similar critical slowing down of some 
pertinent macroscopic quantity (polarity, magnetisation, etc) to its equilibrium value 
near a critical temperature Tg . These similarities suggest a universal physical origin, 
related to randomness, which is present in all these materials. Experimentally, most 
of these relaxations are well fitted by a stretched exponential with time: 

where p = 1 when the temperature is larger than a value T,, and 3s /3 s 1 for Tg s T s 
T,. Some authors (see, for example, [7]) have suggested different mechanisms to 
explain this empirical result but none of them gives a clear explanation of the observed 
values of p, and especially of its tending to f [8] as the temperature approaches Tg. 
Recently, Campbell [9] has argued that this phenomenon is related to the topology of 
the diffusion path of the system in its configuration space. The aim of this paper is 
to show that, under reasonable assumptions, this argument leads to a stretched- 
exponential time relaxation of the form ( l ) ,  with :< p < 1. For convenience, we 
concentrate on Ising spin systems, but the following scheme remains quite general. 

Consider a system of 'N spins $. Its configuration space can be represented by the 
vertices of a N-dimensional hypercube. Two states of the system differing from the 
flipping of one spin are near-neighbouring vertices on the hypercube. The Hamiltonian 
H, which governs the thermodynamics of the system, allows for associating an energy 
to each vertex. We call Eo the lowest energy and A ( T )  the subset of vertices whose 
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904 J-M F'lesselles and R Botet 

energies are smaller than E,+iNk,T. The proportion, p ,  of configurations which 
belong to A( T )  is indeed a non-decreasing function of the temperature. 

The relevant parameter for spin glasses is 

q ( t )  = (s(o)s(t))T (2) 

where ( )= means thermal average and the bar means the average over sites. There is 
a corresponding parameter in the configuration space. To show it, let us first define 
the Hamming vector r between two configurations a and p :  the ith component of r 
is 0 if the ith spin is in the same state in both configurations and 1 if one is +f and 
the other -4. So r2 is just the minimum number of spins which have to be flipped to 
change from configuration a to configuration p. If Si,, is the state of the ith spin in 
the configuration a, we have exactly N - r 2  products Si,,Si,, equal to +:, and r2 
products equal to -a. Imagine now that the system is prepared in any state at time 
t = 0. As the time increases, its representative point in the configuration space jumps 
from one vertex to other. The jump probability is simply related to the Boltzmann 
factor: exp(-AE/k,T), where AE is the difference in energy between two neighbouring 
sites (here, we assume that just one spin can flip at the same time). This kind of 
random walk is thermally averaged by the choice of the jump probability factor, so 
that one can write 

r 2 ( t )  is now the average value of the Hamming distance r2 over all possible'walks 
between the configuration at time t and the initial time. Moreover ( ) means the average 
over the quenched disorder of interactions between spins. In practice, we are neither 
able to calculate the exact distribution of energies on the hypercube of configurations, 
nor, of course, the statistical weight of all the walks for a given Hamiltonian. Therefore, 
some drastic simplifications are needed to pursue the calculation. Though the approxi- 
mations are quite crude, this approach is still based on physical grounds because the 
result seems to be rather universal. 

In this way, we suppose that energies are randomly distributed on the hypercube, 
according to some probability law: p ( E ) .  Moreover, we approximate the Boltzmann 
factor by 1 if the two vertices belong to A( T ) ,  and 0 if not. 

Let us now introduce some notation: the N-dimensional hypercube is called QN 
and the initial configuration at t = 0 is called 0. We suppose that 0 belongs to A( T )  
for simplicity, but this is not important. Finally, we call Pa(r, t )  the probability that 
the representative point of the system is at distance r from 0 at time t. 

So the quantity to be calculated is 

2. Relaxation for f < p < 1 

For each direction i (1 S i S N ) ,  we define the subset Ai(  T )  of vertices which belong 
to A( T ) ,  and whose vector r is such that ri = 1. Symmetrically, we define the set Ai( T )  
of vertices which belong to A.( T ) ,  with ri = 0. Since p is supposed to be strictly larger 
than f, the two disjoint subsets Ai and Ai are non-empty, and their reunion is A( T ) .  
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The definition of r 2 ( t )  is 

This can be seen as the sum of the temporal evolution of the quantities: 

r T ( t ) =  c PQ(r, t )  
r e A , ( T )  

which is just the behaviour of the random walk projected on an edge of QN. 
If ni is the number of sites which belong to A i ( T ) ,  and mi the number of links 

connecting sites of Ai( T )  to sites of Ai( T ) ,  the characteristic jump time from ri = 0 to 
ri = 1 can be written as 

1 1 mi 
T , , ~  N n - ni 

- (7) 

where n = ~ 2 ~ .  Similarly, the characteristic jump time from ri = 1 to ri = 0 is such that 

Then we have 

The problem is solved if we are able to average this quantity over all possible couples 
( m i ,  n i ) ,  with the two constraints: vertices belong to QN and n = ~2~ (where p is fixed). 

When one disposes n sites on the vertices of Q N ,  the probability that ni sites belong 
to a given ( N  - 1)-dimensional hypercube is just a hypergeometric law centred in n / 2 .  
Once one knows that Ai( T )  contains exactly ni sites, the probability of constructing 
mi bonds between sites of Ai( T) and sites of Ai( T) is also given by a hypergeometric 
law, centred in n i ( n  - n i ) / 2 N - ' .  

More precisely: 

prob[ ni; mi ]  = [ ('::') ( n "' - ni ) ( 2nN)-']  [ ( ( N-' ni - - mi + ' )  ('::') -'I (10) 

with the constraints 

maxfo, ( 2 p  - 1 ) 2 ~ - ' }  s mi s min{ni, n - ni} .  

Now, we can write q N ( t )  in the more pleasant form: 

n i ( n - n i )  N 
prob[ni; m i ] n i  exp 

with the constraints ( 1 1 ) .  
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Replacing prob[ ni;  mi ]  by a product of two normal laws allows us to find q N (  t)  as 

8 (2p- l ) ( l -p )  N2N 
fort<--. 

P 4P 
In practice (this means, in experiments or numerical simulations), one has t - N << 
N2N’2, so that formula (13) can be well approximated by 

qN(t)-$exp(-2pt/N) (14) 
for 3 < p < 1. This formula remains valid for p = 1,  as can be easily seen from equation 
(12). This result (14) is not very surprising since it just corresponds to the most probable 
value of exponent 

mi E 
ni(n  - n i )  N 

appearing in (12). It agrees quite well with numerical simulations published earlier 
[lo]$. For p S i ,  the failure of the method comes from the non-zero probability that 
ni vanishes. In this case, the method has obviously no more meaning. 

3. Relaxation at the percolation threshold 

In our model, two values of p play a particular role: p = 4, above which the relaxation 
is exponential, and p = pc = 1/ N, which is the percolation threshold in site percolation 
on the hypercube [lo]. These values arise from graph theory and the main results 
about the site percolation problem on a hypercube are summarised below [12]. 

( a )  4 < p d 1 : there is almost surely a single cluster, the size of which is obviously 

( b )  l / N < p < $ :  there is almost surely a main cluster of size of order 
p2N. 

Uog2[1/(1 -P)l}-l. 
and many small clusters, the largest of which has almost surely a size of order 

( c )  p < 1/ N: the largest cluster is asymptotically of size N. 
For spin glasses, it is tempting to associate these two thresholds, respectively, to 

the appearance of Griffiths singularities [ 131 and to the spin-glass transition. 
If this assumption is true, a stretched exponential ( 1 )  with = f is expected at the 

percolation threshold. This is the aim of the following derivation. The idea of the 
analytical calculation consists in mapping a random walk on the hypercube into a 
random walk in the whole space of the same Euclidean dimension. This is made 
possible by assuming that, at each Monte Carlo step, the random walker chooses at 

t If we take 7- s as the elementary jump time, this limit is obtained for f - 10’’ yr with an assembly 
of 100 spins! This limit is even larger for macroscopic systems. For times larger than this limit, one finds 

2 
qN(f)=exP (-; ( 2 P  - 1 )  

$ In the case p = 1, an exact result may be found for discrete time. One finds [ 111 

qN(t)=${l-exp[t  ln(l-2/N)]}. 

It appears clearly that one first has to make N + +CO before f + +w, to find equation (14). 
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random any available direction in space filled with identical hypercubes, instead of 
choosing just one available bond (see figure 1). 

This mapping allows us to write PQ(r, t )  in terms of Pz(r, t ) ,  the probability for 
the random walker on the Euclidean space to be at a distance r from its starting point: 

PQ(C t )  = c Pz(r+R,  t )  (15) 
R E Z N  

where E N  is the set of all N-dimensional vectors with integer coordinates (translations 
of the Bravais lattice). 

The crucial assumption now lies in replacing all the hypercubes by statistically 
similar hypercubes (i.e. the same value of p ,  but different configurations). The whole 
calculation rests on this assumption which remains unproven, but may be argued as 
follows. Though at the percolation threshold the random walker has only a very few 
actually possible jumps from a given vertex, these jumps will be done in directions 
that always differ from one vertex to another because of the high dimensionality of 
the space: after a few steps, the random walker should lose the memory of its former 
path. Moreover, as the dimension N is larger than the upper critical dimension d, = 6, 
we may use the mean-field results of percolation theory. So we have linked a problem 
of a random walk on the hypercube at the percolation threshold to a random walk on 
a percolation cluster above the upper critical dimension. In this case, Pa is given by 
the scaling formula [14]: 

pz(r, t )  - t - d / z f ( r / t d / z D )  (16) 

with d’ = $ and D = 4. 

periodic function and can be written as a Fourier series: 
Formula (15) allows us to extend the function Po in the space ZN. It is then a 

P ( r ,  t )  = c ak exp(i.rrk. r ) <  
k e B Z  

Figure 1. Sketch of the mapping of the diffusion on hypercube Q2 to the diffusion in the 
whole space Z2 considered as an assembly of identical hypercubes. T h e  random walker 
is initially on the site x. Then it jumps onto the available site 0, following the full line 
with arrow. In the whole space, it is identical to consider that the random walker can 
jump with equal probability either on 0 or on the site denoted 0 following the broken 
line with arrow. In the latter description, all the sites x, 0, A are respectively identical 
to sites X, 0, A. 
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Here the vectors k are restricted to the first Brillouin zone: k = ( c1, . . . , c N )  where all 
the ci are 0 or 1 and ak is given by 

1 
a -- C Pz(r, t )  exp(-i.rrk* r ) .  

- 2N r . Z N  

This representation in terms of ak is useful because of the relations: 
i f k = 0  

if k 2 2 2  

2N-1 

r:exp(i.rrk-r)=(-r-1 i f k i = l  a n d k j = O f o r j # i  (19) 
QN 

for every value of i = 1,2, .  . . , N. This implies the value of r 2 ( t ) :  
(r2(f))=1N-2N-’ ak 

k s B Z  
llkll=l 

which is the key step to evaluate q N ( t )  via equation (3). 
Since Pz vanishes beyond the percolation cluster, the coefficient ak can be 

estimated as 

where p ( r )  is the two-point correlation function (probability of finding a particle at r 
from a given particle). Since p (  r )  behaves as r D - N ,  standard spherical transformations 
lead to 

where JN12-1 is the spherical Bessel function of order N / 2  - 1. The functionf(x) must 
be regular near x = 0 and is an even function of its arguments; a simple form for x << 1 
is 

where 9 is the diffusion constant and a’ is a constant of order unity (this is exact on 
Euclidean lattices). This gives the following formula for a k  : 

f (x)  - exp(-a2x2/g) (23) 

where cp is the confluent hypergeometric function. The proportionality factor omitted 
in (24) is just ao=2-N. 

Finally,’(20) and (24) give an explicit expression for qN( t ) :  

This is not exactly a stretched exponential. But if the second argument of cp is large 
( t  << N39-3) one finds the asymptotic expansion: 

which is of the form (1) with p =f. 

that for even larger times ( t  >> N39a-3),  one finds a simple power law: 
So, for large times, a stretched exponential with exponent $ is derived, but note 

qN( t )  - t - ’ I 3 .  
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Indeed both stretched exponential and power law seem to be two natural aspects of 
these kinds of relaxation processes in disordered systems, as pointed out in many 
articles [ 151. 

5. Conclusion 

This paper presents an analytic derivation of relaxation phenomena for disordered 
systems with stretched-exponential behaviour (and p = f) at the glass transition. Some 
analytical results have been obtained under an unproven assumption of irrelevant 
disorder, which is supposed to be true because of the large number of degrees of 
freedom of the system. The example which has been treated (random energies in the 
configuration space) is obviously too naive to be realistic. But we can argue that the 
scheme is quite general if it is explained as follows: instead of energies, consider energy 
valleys. It is well known that disordered materials have many valleys of almost the 
same minimum energy. Consider now the configuration space as an assembly of valleys 
in a large dimensional space. The topology of the ensemble of valleys is more 
complicated than simple vertices of an hypercube, but it keeps the same important 
features: it is a closed subset of a N-dimensional space, whose proportion of available 
valleys is an increasing function of temperature. So all the relaxation behaviours found 
above are expected to be valid when this description of the configuration space can 
be done. 
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